

FLEX: Full-Body Grasping Without Full-Body Grasps

Purva Tendulkar Dídac Surís Carl Vondrick

JUNE 18-22, 2023 CVP R VANCOUVER, CANADA

Task and Challenges

Full-body grasping of objects in presence of obstacles.

MoCap Challenges

No Generalization No Obstacle Consideration

Key Idea

- Full-Body Grasp → Full-Body + Hand-Grasp
- No explicit full-body grasps required for training.

ReplicaGrasp Dataset

Approach

FLEX (Full-Body Latent Exploration) generates a 3D human grasping the desired object, given

- 1. Pre-trained right-hand grasping model G that can predict global MANO parameters $\{\theta_h, t_h, R_h\}$
- 2. Pre-trained full-body pose prior ${\cal P}$ that can generate feasible full-body poses $\theta_{{f b}}$
- 3. Learnt pose-ground prior which predicts the floor given the human pose $\theta_{\mathbf{h}}$

FLEX performs a gradient-based search over hand & body priors to minimize hand-matching and obstacle losses.

Key Insights

 Searching in the latent space of the hand-grasping model
 G allows full-body obstacle consideration.

Hand-grasp search

- We penalize all vertices in the connected components of the resulting body graph other than the largest one.
- Small connected component Connection

Obstacle avoidance loss

The ground position can be

This removes 2 DoFs from

the optimization.

predicted from the body pose.

Pose-ground Prior

Comparison Results

All humans are samples from FLEX